West Melbourne Chiropractic
James E. Greathouse Jr, BS DC
1589 South Wickham Rd.
West Melbourne, FL 32904
United States
ph: 321 725-6314
fax: 312 724-1533
alt: 321 544-6443
makg1
What Is Cold Laser?
Low-Level Laser Therapy, sometimes referred to as Cold Laser Therapy, is a painless, sterile, non-invasive, drug-free treatment which is used to treat a variety of pain syndromes, injuries, wounds, fractures, neurological conditions and pathologies. Laser therapy can be used any time a patient needs a non-invasive procedure for the control of pain, when conventional therapies have been ineffective, or when the acceleration of healing from injuries is desired.
Is Laser Therapy Safe?
Laser therapy has been successfully used around the world for over 30+ years, with no reported long-term or irreversible side effects. Our Laser has been cleared by the FDA for the treatment of Carpal Tunnel Syndrome and other joint and muscle problems. It has successfully treated chronic and acute pain, wounds, sports injuries, and more.
How does laser light heal?
Low-level lasers supply energy to the body in the form of non-thermal photons of light. Light is transmitted through the skin's layers (the dermis, epidermis and the subcutaneous tissue or tissue fat under the skin) at all wavelengths in the visible range; however, light waves in the near infrared ranges penetrate the deepest of all light waves in the visible spectrum. When low level laser light waves penetrate deeply into the skin, they optimize the immune responses of our blood. This has both anti-inflammatory and immunosuppressive effects. It is a scientific fact that light transmitted to the blood in this way has a positive effect through-out the whole body, supplying vital oxygen and energy to every cell.
What to Expect During a Laser Therapy Treatment Session
For most people, laser therapy is quite passive. Some patients have reported a slight tingling or tapping in a nerve or along a nerve pathway. Some have noted that they are able to sense a slight feeling of warmth. But for the most part, the treatment, which may last from 15 to 30 minutes, is not noticed at all. Following (and even during) a laser therapy session, approximately 75-80% of patients being treated can notice an immediate improvement in their condition. This will depend primarily on the type of condition and the length of time the condition has been present. Generally, the more chronic or severe the condition, the longer it takes to respond. The majority of conditions treated will take anywhere from 4-15 treatments. Once again, the number of treatments depends upon the severity of the condition and its duration. There are some conditions that will never completely resolve but can be helped and maintained with laser therapy. If your condition does not change immediately, it may take 3-4 sessions before a dramatic or marked change is perceived.
A Little More Technical Read Below
INFLAMMATION/PAIN REDUCTION AND HEALING
Low Level Laser Therapy (LLLT) precipitates a complex set of physiological interactions at the cellular level that reduces acute inflammation, reduces pain, and accelerates tissue healing.
by Richard Martin, BS, CLT
Compromised cells and tissues respond more readily than healthy cells or tissues to energy transfers that occur between LLLT-emitted photons and the receptive chromophores found in the various cells and sub-cellular organelles. Cells and tissues that are compromised have been shown to have a significantly higher response to LLLT irradiation than normal healthy structures. Cell membranes, mitochondria and damaged neurological structures exhibit less than optimal metabolism and stasis conditions. Multiple studies have demonstrated that under these compromised conditions, the introduction of energy transfers response and the resultant enhancement of metabolic activity pronounced in biologically challenged cells, thus selectively targeting compromised cells, in reality, these cells exhibit a lowered reaction threshold to the effects of laser light and are more easily triggered to energy transfer responses. The result is that LLLT has a significant effect on damaged cells and tissues while normative biological constituents are appreciably less affected.1
The cellular cascade effect — precipitated by the actions of enzymes and having a significant response in the presence of LLLT — has a significant impact on cellular and tissue function. Since a considerable number of the reactive proteins that respond to laser stimulation are enzymes, laser light effects are amplified in the stimulation of beneficial enzymes and depression of deleterious enzymes.
At the cellular level, cytochromes can be defined as electron or proton-transfer proteins that act as energy producers for human biological functions. Both of the cytochrome enzymes, Cytochrome c Oxydase and Nitric Oxide Synthase (NOS) have been found to be particularly reactive to laser photon stimulation. The particular affinity of these and other photo-reactive enzymes to accelerate their functions in the presence of LLLT provides critical increases in the molecule ATP and Nitric Oxide (NO) which enhances cellular activity & repair
Although the various actions of LLLT in regards to inflammation, pain and healing have been separated categorically here for the purpose of process identification, their interactions are not so easily distinguished. In response to LLLT, the reduction in inflammation, pain and healing time all compliment each other and many of the processes are either simultaneous or overlapping.
Acute Inflammation Reduction
Immediately after an acute injury event, the body, in response to the disruption of the integrity of vascular, soft tissue, begins a series of biological responses. The inflammatory reaction consists of both vascular and cellular events. Injury responsive components such as Mast cells, Bradykinins and Prostaglandins are activated along with the vascular responses and cellular membrane reactions. All of these combined processes and events are represented by the symptoms of edema, inflammation, pain and functional debility. LLLT can be effective in mediating both the symptoms and the underlying inflammatory process by the following actions:
1. Stabilization of cellular membrane — Ca+ +, Na+ and K+ concentrations as well as the proton gradient over the mitochondria membrane are positively in This is accomplished in part by the production of beneficial Reactive Oxygen Species (ROS) wherein triplet oxygen molecules absorb laser light pro ducing singlet oxygen molecules. These ROS modulate intracellular Ca+ + concentrations and laser therapy improves Ca+ + uptake in the mitochondria.2,3,4
2. ATP production and synthesis are significantly enhanced, contributing to cel lular repair, reproduction and functional ability. Laser stimulation of Cytochrome c Oxidase, a chromophore found on the mitochondria of cells, plays a major role in this rapid increase in production and synthesis of ATP.3
3. Vasodilatation is stimulated via Histamine, Nitric Oxide (NO) and Serotonin increases, resulting in reduction of ischemia and improved perfusion. Laser-mediated vasodilatation enhances the transport of nutrients and oxygen to the damaged cells and facilitates repair and removal of cellular debris.5,6
4. Beneficial acceleration of leukocytic activity results in enhanced removal of non-viable cellular and tissue components, allowing for a more rapid repair and regeneration process.
5. Increased Prostaglandin synthesis, particularly in conversion of the prostaglandins PGG2 and PGH2 periossides into prostaglandin PGI2. PGI2 (Prostacyclin), has a vasodilating and anti-inflammatory action with some attributes similar to Cox-I and Cox-II inhibitors.7
6. Reduction in Interleukin 1(IL-1). Laser irradiation has a reducing effect on this pro-inflammatory cytokine that has been implicated in the pathogenesis of rheumatoid arthritis and other inflammatory conditions.8
7. Enhanced lymphocyte response. In addition to increasing the number of lymphocytes, laser irradiation mediates the action of both lymphatic helper T-cells and suppressor T-cells in the inflammatory response. Along with laser modification of beta cell activity, the entire lymphatic response is beneficially affected by LLLT.9
8. Increased angiogenesis. Both blood capillaries and lymphatic capillaries have been clinically documented to undergo significant increase and regeneration in the presence of laser irradiation. The resulting improvement in circulation and perfusion enhances all repair and healing processes. Laser induced increases in NO and the growth factors — in particular cytokine INF-g — are contributory to this process.10,11
9. Temperature modulation. Areas of inflammation typically demonstrate temperature variations with the inflamed portion having an elevated temperature. Laser therapy has been shown to accelerate temperature normalization, demonstrating its beneficial influence on the inflammatory process.
10. Enhanced super oxide dismutase (SOD) levels. Laser stimulated increases in cytokine SOD levels interact with other anti-inflammatory processes to accelerate the termination of the inflammatory process. Interactions between SOD and Reactive Oxygen Species (ROS) production subsequent to LLLT balance free rad allows for the beneficial effects of ROS while inhibiting detrimental interactions.12
11. Decreased C-reactive protein and neopterin levels. Laser therapy has been shown to lower the serum levels of these inflammation markers, particularly in rheumatoid arthritis patients.
Decreased marker levels are indicative that the anti-inflammatory actions are effectively reducing the inflammatory process.
Since LLLT does not exacerbate the injury, it can be used immediately post injury. This rapid initiation of therapy in acute inflammation will assist in limiting the scope and duration of the inflammatory event and minimize the pain and severity associated with it.
While the treatment regimen and course of therapy may be modified in chronic situations, the physiological responses and interactions remain consistent. Chronic conditions may require longer treatment times.
Pain Reduction
The unique pain reduction abilities of LLLT have been exten documented in numerous clinical studies and medical papers. While there remains much to learn in re pain reduction characteristics, there is a wealth of knowledge currently available to demonstrate the effectiveness of laser therapy in this regard.
Because the pain amelioration capabilities of LLLT are ac combination of local and systemic actions — utilizing enzymatic, chemical and physical interventions — the process is very complex. However, there is a preponderance of medical evidence that justifies a conclusion that effective pain reductions can be achieved via LLLT. Following are processes and events that are promoted by LLLT therapy:
1. Increase in b-Endorphins. The localized and systemic in-crease of this endogenous peptide after LLLT irradiation has been clinically reported in multiple studies with subsequent pain reductions.
2. Blocked depolarization of C-fiber afferent nerves. The pain blocking effect of LLLT can be pronounced, particularly in low velocity neural pathways, such as non-mylenated afferent axons from nociceptors. Laser irradiation suppresses the exci tation of these fibers in the afferent sensory pathway.13,14
3. Increased nitric oxide production. NO has both a direct and indirect impact on pain sensation. As a neurotransmitter it is essential for normal nerve cell action potential in impulse transmission activity and, indirectly, the vasodilatation effect of NO can enhance nerve cell perfusion and oxygenation.
4. Increased nerve cell action potential. Healthy nerve cells tend to operate at about -70 mV and fire at about -20 mV. Com approximates -20 mV there-by resulting in pain stimulus. LLLT can help restore the action potential closer to the normal -70 mV range. Both compound muscle action potential (CMAP) values and nerve latency values have shown improvement with laser therapy.15
5. Axonal sprouting and nerve cell regeneration. Several studies have documented the ability of LLLT to induce axonal sprouting and some nerve regeneration in damaged nerve tis sues. Where pain sensation is being magnified due to nerve structure damage, cell regeneration and sprouting may assist in pain decrease.16,17
6. Decreased Bradykinin levels. Since Bradykinins elicit pain by stimulating nociceptive afferents in the skin and viscera, mitigation of elevated levels through LLLT can result in pain re Kininase II, and increase in NO are considered the contributors to this Bradykinin decrease.
7. Increased release of acetylcholine. By increasing the avail-able acetylcholine, LLLT help s in normalizing nerve signal trans-mission in the autonomic, somatic and sensory neural pathways.
8. Ion channel normalization. LLLT promotes normalization in Ca+ +, NA+ and K+ concentrations resulting in beneficial pain reduction results from these ion concentration shifts. Figure 2 presents a simplified representation of the effects of LLLT on pain improvement at the cellular level.
Tissue Healing
One of the truly unique characteristics of LLLT is that it has the ability to actually promote and enhance healing, not just treat symptoms. The irradiation by low-level laser light accelerates and enhances healing activities carried out by the body. Sever-al of the unique characteristics of LLLT that work to alleviate pain and inflammation also play an important role in accelerating the healing process; the LLLT-mediated reduction in inflammation and pain frees the body’s natural ability to repair and heal itself.
As wound healing progresses through the stages of inflammation, proliferation, remodeling and maturation, laser therapy presents the opportunity to impact each of these phases in positive and beneficial ways. LLLT can provide the following beneficial impacts in both open surface wounds and closed connective or soft tissue injuries as follows:
1. Enhanced leukocyte infiltration. LLLT stimulates activity involving neutrophils, monocytes and lymphocytes.
2. Increased macrophage activity. LLLT accelerates macrophage activity in phagocytosis, growth factor secretion and stimulation of collagen synthesis.
3. Increased neovascularization. The significant angiogenesis that occurs with laser therapy promotes revascularization with subsequent improvement in perfusion and oxygenation. Endothelial cell regeneration is accelerated.18
4. Increased fibroblast proliferation. LLLT stimulation in-creases fibroblast numbers and fibroblast-mediated collagen production.19
5. Keratinocyte proliferation. The beneficial synthesis active factor ability of keratinocytes are enhanced by proliferation secondary to LLLT.20
6. Early epithelialization. Laser-stimulated acceleration of epithelial cell regeneration speeds up wound healing, minimizes scarring, and reduces infection opportunities.
7. Growth factor increases. Two to five fold increases in growth-phase-specific DNA synthesis in normal fibroblasts, mus cells irradiated with IR light are reported. Increases in vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF-2) secondary to IR light irradiation have also been reported.
8. Enhanced cell proliferation and differentiation. Laser-in duced increases in NO, ATP and other compounds that stimulate differentiation into mature cells. Increased numbers of myofibroblasts, myofibrils, myotubes etc., as well as bone cell proliferation, have been clinically demonstrated with LLLT. Satellite cells, the precursor cells in the process of muscle regeneration, show significant increase in proliferation when irradiated with LLLT.21,22,23
9. Greater healed wound tensile strength. In both soft tissue and connective tissue injuries, LLLT can increase the final ten increasing the amount of collagen production/synthesis and by increasing the intra and inter-molecular hydrogen bonding in the collagen molecules, laser therapy contributes to improved tensile strength.24,25,26,27
The preceding effects combine to achieve an accelerated healing time from onset of injury to mature healed wound is reduced.28
Conclusion
The FDA has recently cleared multiple laser and LED devices for treatment of a variety of medical conditions including carpal tunnel syndrome, cervical neck pain, low back pain, joint pain, generalized muscle pain and acceleration of wound healing. Governmental agencies such as NASA are currently using tech medical conditions in space applications. The U.S. Olympic training facilities have just released state validate the growing acceptance in mainstream medicine for the medical efficacy of laser therapy as a viable, often superior therapeutic treatment modality.
With over 200 clinical studies — many of which are double-blind, placebo-controlled — and in excess of 2000 published articles on LLLT, this innovative new technology has a well-documented research and application history. Having grown far beyond its distant Institutional Review Board (IRB) and experimental treatment status, LLLT is now being considered a therapy of choice for many difficult pain management challenges such as fibromyalgia and myofascial pain. New and ongoing clinical investigations offer growing potential for even more widespread applications of this truly unique light therapy.
Richard Martin, BS, CLT is a photo biologist specializing in laser therapy, in position of Director of Science at MicroLightLaser, a subsidiary of Innovative Medical Group Corporation in Santa Manteca for eight years. He has served as manager for several biomedical design and service facilities and participated as lead researcher for biomedical devices involved in emergency cardiac care, warmed intravenous fluid therapy and laser therapy. Richard has participated in medical clinical trials for 15 years as a clinical trial analyst and contributing clinician.
References
1. Almeida-Lopes L. Human gingival fibroblast proliferation enhanced by LLLT. Analysis in vitro of the cellular proliferation of human gingival fibroblasts with low level laser. Dissertation at Universidade do Vale do Paraíba, São Paulo, Brazil. 1999.
2. Lubart R, Friedman H, and Lavie R. Photobiostimulation as a function of differ wavelengths. bone regeneration. The Journal of Laser Therapy. Vol 12. World Association of Laser Therapy. 2000.
3. Karu T. et al. Changes in absorbance on monolayer of living cells induced by laser irradiation. IEEE Journal of Selected Topics in Quantum Electronics. IEEE Lasers and Electro-Optical Society. December 2001. 7(6): 982.
4. De Castro E Silva Jr. O, et al. Laser enhancement in hepatic regeneration for partially hepatectomized rats. Lasers in Surgery and Medicine. 2001. 29(1):73-77
5. Silveira LB, et al. In vivo study on mast cells behavior following low-intensity visible and near infrared laser radiation. Laser Surg Med. Abstract issue. Abstract 304. 2002.
6. Trelles MA, et al. LLLT in vivo effects on mast cells. Department of Tissue Pathol University Hospital, Tarragona, Spain. Abstract from the 7th International
Congress of European Medical Laser Association, Dubrovnik, Croatia, June 2000.
7. Tam G. Action of 904 nm diode laser in orthope Tolmezzo, Italy. Meridian Co, Ltd. Website: http://www.meridian.co.kr/ product1_8.htm. Last visited 10/27/03.
8. Bjordal JM, and Couppe C. What is optimal dose, power density and timing for low level laser therapy in tendon injuries? A review of in vitro and in vivo trials. Department of Physiotherapy Science, University of Bergen, Norway. Abstract from the 7th International Congress of European Medical Laser Association, Dubrovnik, Croatia, June 2000.
9. Stadler I, et al. In vitro effects of low level laser irra diation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med. 2000. 27(3):255-61
10. Kubota J. Laser and sports medicine in plastic and reconstructive surgery. Department of Plastic and Reconstructive Surgery, Kyorin University School of Medicine, Tokyo, Japan. Abstract from II Congress of the Internat. Assn for Laser and Sports Medicine, Rosario, Argentina, March 10-12, 2000.
11. Lievens P and Van der Veen PH. Wound healing process: influence of LLLT on the proliferation of fi broblasts and on the lymphatic regeneration. Depart research, Vrije University, Brus sels, Belgium. Abstract from the 7th International Congress of European Medical Laser Association, Dubrovnik, Croatia, June 2000.
12. Karu TI. Mechanisms of low-power laser light ac tion on cellular level. In Lasers in Medicine and Den tistry. Ed. by Z.Simunovic. Rijeka. Vitgraph. 2000. pp. 97-125.
13. Ohno T. Pain suppressive effect of low power laser irradiation. A quantitative analysis of substance P in the rat spinal dorsal root ganglion. J Nippon Med Sch. 1997. 64 (5):395-400.
14. Tsuchiya K et al. Diode laser irradiation selectively diminishes slow component of axonal volleys to dor sal roots from the saphenous nerve. Neuroscience Letters. 1993. 161:65-68.
15. Rochkind S, et al. Laser therapy as a new modali ty in the treatment of incomplete peripheral nerve in-juries: Prospective Clinical Double-Blind Placebo-Controlled Randomized Study. Department of Neuro surgery, Rehabilitation and Physiotherapy, Tel Aviv Sourasky Medical Center, Israel. Abstract from the 7th International Congress of European Medical Laser Association, Dubrovnik, Croatia, June 2000.
16. Byrnes KR, et al. Cellular invasion following spinal cord lesion and low power laser irradiation. Lasers Surg Med. 2002. S14:11.
17. Rochkind S, Shahar A, and Nevo Z. An innovative approach to induce regeneration and the repair of spinal cord injury. Laser Therapy. 1997; 9 (4): 151.
18. Schindler A, et al. Increased dermal neovascular ization after low dose laser therapy. 2nd Congress, World Association for Laser Therapy. Kansas City. 1998.
19. Almeida-Lopes L, et al. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers in Surgery and Medicine. 2001. 29(2):179-184.
20. Samoilova KA, et al. Enhancement of the blood growth promoting activity after exposure of volun teers to visible and infrared polarized light. Part I: stimulation of human keratinocyte proliferation in vitro. Advance Article of 2004 Photochemical & Pho tobiological Sciences. Published on the web at http://www.rsc.org/is/journals/current/PPS/ppAd‑vArts.htm. Sept 1, 2003.
21. Barber A, et al. Advances in laser therapy for bone repair. The Journal of Laser Therapy. Vol.13. World Association of Laser Therapy. 2000.
22. Antonio L, et al. Biomodulatory effects of LLLT on bone regeneration. The Journal of Laser Therapy. Vol. 13. World Association of Laser Therapy. 2000.
23. Shefer G, et al. Low energy laser irradiation pro-motes the survival and cell cycle entry of skeletal muscle satellite cells. Journal of Cell Science. 2002. 115: 1461-1469.
24. Enwemeka CS and Reddy GK. The biological ef fects of laser therapy and other modalities on con nective tissue repair processes. The Journal of Laser Therapy. Vol. 12. World Association of Laser Therapy. 2000.
25. Reddy GK, Stehno-Bittel L, and Enwemeka CS. Laser photo stimulation accelerates wound healing in diabetic rats. Wound Repair and Regeneration. 2001. 9:248-255.
26. Stadler I, et al. 830 nm irradiation increases the wound tensile strength in diabetic murine model. Lasers in Surgery and Medicine. 2001. 28 (3):220-226.
27. Parizotto N, et al. Structural analysis of colagen fibrils after He-Ne laser photo stimulation. 2nd Con
28. Simunovic Z, et al. Low level laser therapy of soft tissue injuries upon sport activities and traffic acci dents: a multicenter, double-blind, placebo-controled clinical study on 132 patients. Pain Center-Laser Cen ter, Locarno, Switzerland. Abstract from II Congress of the Internat. Assn for Laser and Sports Medicine, Rosario, Argentina. March 10-12, 2000.
West Melbourne Chiropractic
James E. Greathouse Jr, BS DC
1589 South Wickham Rd.
West Melbourne, FL 32904
United States
ph: 321 725-6314
fax: 312 724-1533
alt: 321 544-6443
makg1